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The exponential separation of initially adjacent trajectories restricts the predictability of deterministic cha-
otic motions. The predictability depends on the initial state from where the trajectory starts that shall be
forecasted. By calculating the predictability simultaneously with the forecast, we are able to reject forecasts
with low reliability immediately, thereby decreasing drastically the average forecast error. We test this scheme
experimentally on Chua’s circuit [Komuro, Tokunaga, Matsumoto, Chua, and Hotta, Int. J. Bifurc. Chaos 1,
139 (1991)], basing all calculations only on a time series of a single scalar variable.

PACS number(s): 05.45.+b

The motion of a nonlinear dynamical system in the cha-
otic phase is not predictable for long time intervals because
forecasting errors in the mean grow exponentially with the
length of the forecasting time. On the average the rate of this
growth is given by the sum of the positive Lyapunov expo-
nents of the system (more precisely, by its Sinai-Kolmogorov
entropy) [1], quantifying globally the separation of initially
adjacent trajectories. For a single forecast, however, a local
rather than a global growth rate determines the probability
for a successful forecast. This rate can be described by ef-
fective Lyapunov exponents [2—4] as a quantity showing
large variations, depending on the initial conditions of the
forecast.

In a recent paper [5] we have demonstrated that the effec-
tive Lyapunov exponents are smooth functions of the state
space coordinate X(0), representing the starting point of a
trajectory segment. They also, of course, depend on the fore-
casting time interval 7. We have displayed these functions in
predictability portraits, which we produce by coloring the
points in the state space according to the value of local pre-
dictability. To this end the effective Lyapunov exponents
have to be calculated. They can be calculated from the equa-
tions of motion of the system, but they can also be computed
from the time series of a single variable. In a second paper
[6] we have argued how the geometric shape of these por-
traits is related to the set of unstable periodic orbits embed-
ded in the attractor [7-9].

In this paper we demonstrate that the a priori knowledge
of predictability can be used to improve forecasting for cha-
otic motions. We test our method in an experimental situa-
tion, in which all information necessary to calculate forecasts
as well as necessary to calculate predictabilities is extracted
from a scalar time series of a single chaotic variable. As a
test system we utilize an experimental realization of Chua’s
circuit. We demonstrate in our example that a drastic reduc-
tion of large forecasting errors is yielded by making use of
system knowledge from the effective Lyapunov exponents.

In [5] we have defined the term predictability
p(X(0),T, €y, €7) as the probability of a successful forecast.
It depends on the state X(0) of the system where the forecast
is made, on the forecasting time interval 7, on the uncer-
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tainty of measurement €;, and on the admitted error e7.
Forecasts of the state of the system at the end of the time
interval T that meet, up to an error lower than or equal to
€7, the state through which the system at the same time
actually moves, are called successful. We have shown that
the so-defined predictability is related to the largest effective
Lyapunov exponent A{{(X(0),T) via

€
p(X(0),T,€,€er)=~constX ;Iexp[ -\ (X(0),7)T]
0

in the linear approximation. A Poincaré section or a projec-
tion of the state space, that-is colored according to
A (X(0),T), constitutes the above mentioned predictability

portrait.
For the calculation of effective Lyapunov exponents from
a scalar time series {x(i), i=0,1,2, ... ,N} one has to

make use of the embedding technique, proposed by Takens
[10]. As soon as the state space is reconstructed, forecasts of
the further evolution of the system based on a measurement
of its actual state can be performed by the technique of local
prediction. To this end we follow the work of Eckmann et al.
[11] and of Brown, Bryant, and Abarbanel [12]. First one has
to search for nearest neighbors of the measured state on the
reconstructed attractor. Then one has to determine the suc-
cessors to which the neighbors have developed during the
time interval T. To these points a local predictor has to be
fitted, e.g., polynomials of degree 1 or higher. The forecast
then is obtained as that point in state space to which the
measured state is mapped by the local predictor. A suitable fit
procedure is described in detail in [4].

One can calculate, however, not only forecasts but also
predictabilities at the measured initial states in the recon-
structed state space. Let f7 be the local predictor and z(0) the
distance between two adjacent trajectories in the domain of
7. Within the forecasting time interval T the jth component
of z(0) becomes

T
z(T)=>, DE 2, (0)+ D>, =——— z,(0)z,(0)+ - - -.
{(T)=2 DEz,(0) ; Sayeay, KOz

The largest effective Lyapunov exponent can be calculated
from the linearized predictor Df7. Let
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FIG. 1. Block wiring diagram of the experimental setup. ADC
denotes analog-to-digital converter.

Dff =QP

be the polar decomposition of the linearized flow, then the
following relation holds [2]:

exp(\QT) = )(P),

with ~?) denoting the ith eigenvalue.

With the knowledge of A} one can reduce the average
forecast error, if it is possible to elude forecasting when the
system is located in a state of bad predictability. Forecasts,
for example, might be accepted only if )\g}f) is below a fixed
value; all others are rejected.

The experimental system we use to test this method is an
electronic realization of Chua’s circuit [16] proposed by
Kennedy [13]. Chua’s circuit is a well-known nonlinear au-
tonomous system [14-16] that exhibits various types of
attractors—including two strange ones—depending on the
choice of the system parameters.

Figure 1 shows a block wiring diagram of our experimen-
tal setup. The circuit consists of an inductance L, two capaci-
tors C,,C,, the resistor R, and the nonlinear resistor NR.
This device is built by two operational amplifiers; it pos-
sesses a piecewise linear characteristic with negative slope.
For further details of the circuit design see [13]. We drive the
system at parameters leading to the “double scroll attractor”
[16], plotted in Fig. 2. As chaotic time series
{x(i), i=0,1,2, . .. ,N} the voltage at the capacitor C, is
sampled by an analog-to-digital converter with 12 bit reso-
lution. Then the signal is fed into a parallel computer net-
work. In our experiment two consecutive time series (each
2.5%x10° points) are sampled. The first is used to recon-
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FIG. 2. The double-scroll attractor of Chua’s circuit projected
onto the (V1,V,) plane.
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FIG. 3. A predictability portrait of the reconstructed double-
scroll attractor. The forecasting interval is 7=1 ms. Note the spiral
structure on each of the two scrolls. Between the scrolls the bright-
ness is caused by the low density of points, not by a large effective
Lyapunov exponent.

struct the attractor; the second is used as a set of initial con-
ditions for the calculation of forecasts as well as to calculate
the forecasting errors in order to test the method. In general,
the dimension of the embedding space should be 2D +1,
where D means the Hausdorff dimension of the attractor
[10]. Using the Grassberger-Procaccia analysis [17] we find
that a three-dimensional space embeds the dynamics of the
system sufficiently at our parameters, analogously to the re-
sult for the Lorenz equations in [18]. The state vectors are
represented by X(i)=(x(i),x(i—1),x(i—2)). As the delay
time between successive points we choose a quarter of the
average time the state of the system needs for one circulation
on a scroll. For the sake of simplicity we choose the delay
time for reconstruction and the time between two measure-
ments to be the same, leading to the sampling frequency 10
kHz.

In Fig. 3 we present a predictability portrait of the double-
scroll attractor in the reconstructed state space. The forecast-
ing interval here lasts 10 delay units (=1 ms). The gray level
of each point encodes the corresponding largest effective
Lyapunov exponent. Similar to the results presented in [5,6]
the portrait exhibits smooth, well-defined zones of decreased
predictability, dotted brightly upon each of the scrolls. This
result can be understood qualitatively as follows: In the dark
zones the trajectories circulate around the center of one
scroll; the motion is rather predictable. At the brighter zones,
however, the circulation becomes unstable and the trajecto-
ries tend to jump onto the other scroll. Due to this instability
the predictability decreases.

In order to investigate the statistics of forecasting errors
we take points from the second part of the time series and
predict their successors. The forecasting interval T lasts 10
delay units corresponding to 1 ms. Then the predicted suc-
cessors are compared with those really recorded and the error
is calculated. In this context we denote by errors the differ-
ence vector between the predicted and the observed state in
the reconstructed state space at the end of each forecasting
time interval T. Figure 4 shows the statistical distribution of
the errors occuring in 16 055 forecasts (solid bars). The dis-
tribution is dominated by moderate errors, but large and very
large errors do occur rather frequently, too.
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FIG. 4. Logarithmic plot of the distribution of relative forecast errors. The solid bars display the frequency of errors that occur if all
forecasts are accepted. If forecasts with low predictability ()\gf)> 100 s~ ') are rejected the distribution shown as hatched bars is obtained.

Obviously the occurrence of large errors is reduced remarkably.

A second processor of the parallel computer system also
calculates forecasts in the same way as the one described
above, but it simultaneously calculates the corresponding ef-
fective Lyapunov exponents. According to their value all
forecasts with an effective Lyapunov exponent above 100
s~! are rejected. In Fig. 4 the resulting error statistics is
shown by hatched bars. The number of accepted forecasts is
10 140, i.e., 63% of the total number of forecasts. Here the
distribution of the smaller errors looks about the same as in
the experiment above. The right part of the diagram, how-
ever, reveals a drastic reduction of the frequency of large
errors. Nearly all the remaining forecast errors are smaller
than or of the order of 1% compared to the size of the attrac-
tor. We quantify the feasibility of our method by calculation
of the ratio of the average forecasting errors with and without
consideration of the predictability. The average forecasting
error of the accepted forecasts is 92% less than the one of all
forecasts.

The effect, of course, depends strongly on the choice of
the admitted effective Lyapunov exponent. For a larger bor-
der, less forecasts are rejected and, of course, the mean error
is not reduced as much as for smaller borders. If, for ex-
ample, we admit all forecasts for which \{f} in the initial
state is A\{}} <200 s~! we achieve an error reduction of 86%,
rejecting 18% of the forecasts. In a practical situation one
might choose the border in a way that the number of fore-
casts and the average error are in good compromise.

We have chosen the parameter setting of Chua’s circuit
well in the regime, where the double scroll attractor exists. If
we vary the resistor R, for example, the average time that the
system stays on the same scroll is changed. For smaller R
this time decreases, for larger ones it becomes longer. Since
the jumps from one scroll to the other one are the less pre-
dictable phases of motion, the size of the zones of decreased
predictability on the attractor changes. This leads to only

slightly varying values of the ratio of average forecasting
errors with and without consideration of predictability, when
R is changed.

One might ask how much time passes until forecasts are
accepted again if the system has just developed to a state
with low predictability. In order to answer this question we
plot in Fig. 5 a piece of a time series measured at the setup.
Every point on the trajectory is marked where a forecast is
calculated. When a forecast is rejected we plot a square,
otherwise we plot a cross. The range of admitted Lyapunov
exponents is \{}/<200 s~!. Additionally we display the
length of the forecasting interval T. From the figure it be-
comes clear that forecasts are mainly rejected in a time in-
terval of the length of about T before a jump from one scroll
to the other. Nevertheless in our example the accepted fore-
casts are rather dense so that intervals where no forecasts are
at hand are shorter than 7.

In conclusion the mean error in forecasts of chaotic mo-
tions can be reduced drastically by consideration of the vari-
ance of predictability for different initial conditions. No ex-
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FIG. 5. The solid line displays a segment of a time series mea-
sured at the experimental setup. We mark all points where forecasts
for the time interval T have been calculated. If A{}?<200 s™'. a
cross is plotted, otherwise a square is plotted.
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plicit model of the dynamics of the system is needed to
calculate forecasts as well as predictabilities. Useful applica-
tions of the method are given, if one can wait to forecast the
motion of the system, until the system is in a state with high
predictability. As an example not really realistic yet, imagine
a situation when the profit of some investments is strongly
related to the reliability of forecasts made for the chaotic
motion of a certain economical variable. The method we
propose is to invest founding on an encouraging forecast
only when the simultaneously calculated predictability is
large enough.

More detailed investigations and applications of our
method to other test systems are planned to be published
elsewhere [19].
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FIG. 2. The double-scroll attractor of Chua’s circuit projected
onto the (V¢1,V ;) plane.



AP (57Y)
— 300

200

100

voltage (i) (V)

6 -4 -2 0 2 4 6
voltage z(z — 1) (V)

FIG. 3. A predictability portrait of the reconstructed double-
scroll attractor. The forecasting interval is 7=1 ms. Note the spiral
structure on each of the two scrolls. Between the scrolls the bright-
ness is caused by the low density of points, not by a large effective

Lyapunov exponent.
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FIG. 4. Logarithmic plot of the distribution of relative forecast errors. The solid bars display the frequency of errors that occur if all

forecasts are accepted. If forecasts with low predictability ()\L}.,’> 100 s~ ') are rejected the distribution shown as hatched bars is obtained.
Obviously the occurrence of large errors is reduced remarkably.



